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We explore six classes of fractal probability laws defined on the positive half-line: Weibull, Frechét, Lévy,
hyper Pareto, hyper beta, and hyper shot noise. Each of these classes admits a unique statistical power-law
structure, and is uniquely associated with a certain operation of renormalization. All six classes turn out to be
one-dimensional projections of underlying Poisson processes which, in turn, are the unique fixed points of
Poissonian renormalizations. The first three classes correspond to linear Poissonian renormalizations and are
intimately related to extreme value theory �Weibull, Frechét� and to the central limit theorem �Lévy�. The other
three classes correspond to nonlinear Poissonian renormalizations. Pareto’s law––commonly perceived as the
“universal fractal probability distribution”––is merely a special case of the hyper Pareto class.
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I. INTRODUCTION

Pareto’s law—a statistical distribution describing a
power-law connection between positive-valued measure-
ments and their occurrence frequencies—is commonly per-
ceived as the “universal fractal statistical distribution.” This
approach is masterfully described and advocated by Benoit
Mandelbrot in a chapter titled “Scaling and power laws with-
out geometry” appearing in his seminal monograph �1�.

Pareto’s law was discovered at the close of the nineteenth
century by the Italian economist Vilfredo Pareto, while
studying the statistics of human income �2�. Thereafter, Pare-
to’s law was observed in empirical data originating from
diverse scientific fields �3–6� �see also the review �7�, and
references therein�.

Theoretically, the perception of Pareto’s law as the “uni-
versal fractal statistical distribution” is based on two funda-
mentals: (i� the association of fractals with power laws, and
(ii� the characterization of statistical laws by their survival
probabilities.

In �8� the first fundamental “fractals=power laws”—in
the context of random collections of real-valued data
points—is examined and shown to be false. Indeed, introduc-
ing a definition of fractality based on the elemental notion of
geometric scale invariance—rather than on the algebraic no-
tion of power laws—leads to random fractal structures which
are not necessarily governed by power laws.

In this paper we present the main findings of a recent
research which questions the second fundamental �9�. While
the survival probability characterizes statistical laws, it is not
a unique characteristic. Rather, there are various probabilistic
functionals—e.g., cumulative distribution function, hazard
rate, cumulant sequence—which characterize statistical laws.
So what happens when setting other characterizing probabi-
listic functionals to be power laws?

This question is explored in �9� by considering the eight
most commonly practiced probabilistic functionals, catego-
rized into the four following classes: distribution functionals:

cumulative distribution function and survival probability
function; hazard functionals: forward hazard rate and back-
ward hazard rate �hazard rates play a key role in issues con-
cerning the reliability of systems �10��; Laplace functionals:
Laplace transform and log-Laplace transform; and moment
functionals: moment sequence and cumulant sequence. Ana-
lyzing systematically these eight probabilistic functionals we
arrive at six classes of probability laws, defined on the posi-
tive half-line, admitting an inherent power-law structure:
Weibull, Fréchet, Lévy, hyper Pareto, hyper beta, and hyper
shot noise. Pareto’s law, commonly perceived as the “univer-
sal fractal probability distribution,” is merely a special case
of one of these six classes—the hyper Pareto class.

Each of the six classes is uniquely distinguished—among
all probability distributions defined on the positive half-
line—by the specific characterizing probabilistic functional
set to be a power law. And, each of the first five classes turns
out to uniquely manifest invariance under a specific type of
an associated “probabilistic renormalization.”

Moreover, all six classes turn out to possess an intrinsic
Poissonian structure, and reflect a deeper notion of fractality
present on the underlying Poissonian level. Indeed, all six
classes are one-dimensional projections of underlying Pois-
son processes �defined on the positive half-line�. And, these
corresponding Poisson processes, in turn, are the unique
fixed points of Poissonian renormalizations.

The first three classes—Weibull, Fréchet, and Lévy—are
linked to linear Poissonian renormalizations and are catego-
rized “linear.” The other three classes—hyper Pareto, hyper
beta, and hyper shot noise—are linked to nonlinear Poisso-
nian renormalizations and are categorized “nonlinear.”

The first three classes emerge from extreme value theory
�11–13� and from the central limit theorem �14–16� as the
universal linear scaling limits of minima �Weibull�, maxima
�Fréchet�, and sums �Lévy� of sequences of independent and
identically distributed positive-valued random variables �see
also �17� for a more recent account�. The aforementioned
linearity or nonlinearity categorization is precisely what
places the former three classes under the realm of extreme
value theory and the central limit theorem—while leaving
the latter three classes beyond their reach.
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The intrinsic Poissonian structure appearing both in this
research and in �8� is elemental and of key importance. It
connects together—in a deep and fundamental way, and via
the class of Paretian Poisson processes—the Fréchet, Lévy,
and Pareto laws discussed herein �18�, and, it facilitates the
definition of Lorenzian fractality in the context of random
collections of positive-valued data points �19�.

The remainder of this paper is organized as follows. We
begin with some preliminaries in Sec. II, describe the linear
classes of fractal probability laws in Sec. III, and the nonlin-
ear classes in Sec. IV. For proofs of the results and assertions
presented herein, the readers are referred to �9�.

II. PRELIMINARIES

In this section we tersely review the notion of Poisson
processes �20�, and the notion of Poissonian renormaliza-
tions �8�. In this section and hereafter, the acronym IID
stands for “independent and identically distributed.”

A. Poisson processes

A Poisson process � with rate function r�x� �x�0� is a
countable collection of points scattered randomly on the
positive half-line �0,��, characterized by the following pair
of properties �20�: �i� the number of points residing within
the interval I is a Poisson-distributed random variable with
mean �Ir�x�dx, and �ii� the number of points residing within
disjoint intervals are independent random variables.

Informally, the Poisson process � places a single point
within the infinitesimal interval �x ,x+dx� with probability
r�x�dx, and leaves the infinitesimal interval �x ,x+dx� empty
with probability 1−r�x�dx—independently of all other infini-
tesimal intervals.

The cumulative rate function R��x� of the Poisson pro-
cess � is the mean number of points residing within the
interval �0,x�, and is given by R��x�=�0

xr�x��dx�. Contrar-
ily, the survival rate function R��x� of the Poisson process
� is the mean number of points residing within the ray
�x ,��, and is given by R��x�=�x

�r�x��dx�.
For example, in the case of a homogeneous Poisson pro-

cess with intensity � ���0� we have r�x���, the cumula-
tive rate function is given by R��x�=�x, and the survival
rate function diverges R��x���.

In the sequel we shall make use of the three following
functionals of a given Poisson process �: �i� its minimal
point minp���p�—which is well defined if and only if the
rate function r�x� is integrable at the origin; �ii� its maximal
point maxp���p�—which is well defined if and only if the
rate function r�x� is integrable at infinity; and �iii� its point
aggregate 	p��p—which, due to Campbell’s theorem of the
theory of Poisson processes ��20�, Sec. 3.2�, is convergent if
and only if the rate function r�x� satisfies the integrability
condition �0

�min�x ,1�r�x�dx��.

B. Poissonian renormalizations

Given a Poisson process � with rate function r�x�
�x�0� we construct its k-order Poissonian renormalization
�k—k being a positive parameter—via the following two-

step algorithm �8�: �i� replace the Poisson process � by an
intermediate Poisson process �k

int with rate function rk
int�x�

=kr�x� �x�0�; �ii� shift each point of the intermediate pro-
cess �k

int using a k-order monotone-increasing scaling func-
tion �k�x� �x�0�. The resulting k-order Poissonian renor-
malization is given by

�k = ��k�p��p��k
int. �1�

�When k is an integer then the intermediate Poisson process
�k

int is the union of k IID copies of the Poisson process �.�
The renormalization procedure is required to be consis-

tent: A k-order renormalization followed by an l-order renor-
malization need equal a kl-order renormalization. This re-
quirement implies the following consistency condition,
which the scaling functions need satisfy: �k ��l=�kl �k , l
�0; the sign � denoting composition�.

The two most fundamental Poissonian renormalizations
are

Linear. A linear Poissonian renormalization is based on a
set of linear scaling functions. The consistency condition im-
plies that the linear scaling functions admit the form �k�x�
=k	x �x�0�, where the exponent 	 is an arbitrary nonzero
parameter.

Power law. A power-law Poissonian renormalization is
based on a set of power-law scaling functions. The consis-
tency condition implies that the power-law scaling functions
admit the form �k�x�=xk	

�x�0�, where the exponent 	 is an
arbitrary nonzero parameter.

The fixed points of Poissonian renormalizations are de-
fined as follows �8�: A Poisson process � is a fixed point of
a given Poissonian renormalization if its renormalizations
��k�k�0 are all equal in law.

III. LINEAR FRACTAL PROBABILITY LAWS

In this section we focus on the three linear classes of
fractal probability laws defined on the positive half-line:
Weibull, Fréchet, and Lévy. These fractal probability laws
are one-dimensional projections of underlying Poissonian
processes, which are the fixed points of linear Poissonian
renormalizations—a fact rendering them the classification
“linear.” This linearity, in turn, is precisely why these fractal
distributions emerge—in the context of extreme value theory
�11–13�, and in the context of the central limit theorem
�14–16�—as the universal linear scaling limits of minima,
maxima, and sums of sequences of IID positive-valued ran-
dom variables.

A. Weibull

Definition. The Weibull law is defined on the positive
half-line �0,�� and governed by the survival probability
function

P��x� = exp�− ax
� �2�

�x�0; the coefficient a and the exponent 
 being positive
parameters�.

Power-law structure. Among the class of probability dis-
tributions defined on the positive half-line, the Weibull law is
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the only probability distribution characterized by a power-

law forward hazard rate. The forward hazard rate H� �x�
�x�0� of a positive-valued random variable X is defined as

the limit H� �x�=lim�→0 �−1 Pr�
X�x+�
X�x� �10�. Infor-

mally, the forward hazard rate H� �x� is the probability that the
random variable X be realized at the point x—given that it
was not realized within the interval �0,x�.

Probabilistic renormalization. As asserted by extreme
value theory �11–13�, the Weibull law is the universal sto-
chastic linear scaling limit of minima of sequences of IID
positive-valued random variables. This universality is mani-
fested by the following “min-renormalization” characteriza-
tion of the Weibull law:

Let �Xi�i=1
� be IID copies of a positive-valued random

variable X, and consider the scaled minima ∧n
=n1/
 min�X1 , . . . ,Xn� �n=1,2 , . . .�. Then, the scaled minima
�∧n�n=1

� are all equal in law if and only if the random variable
X is governed by the survival probability function of Eq. �2�.

Poissonian structure. The Weibull law is the probability
distribution of the minima of Poisson processes defined on
the positive half-line and governed by power-law cumulative
rate functions. More specifically, a Poisson process � is gov-
erned by the power-law cumulative rate function R��x�
=ax
 �x�0� if and only if its minimal point minp���p� is
governed by the survival probability function of Eq. �2�.

Poissonian renormalization. Poisson processes defined on
the positive half-line and governed by power-law cumulative
rate functions constitute the fixed points of linear Poissonian
renormalizations with positive exponents. More specifically,
a Poisson process � defined on the positive half-line is a
fixed point of a linear Poissonian renormalization with scal-
ing functions �k�x�=k1/
x if and only if its cumulative rate
function admits the power-law form R��x�=ax
 �x�0�.

B. Fréchet

Definition. The Fréchet law is defined on the positive half-
line �0,�� and governed by the cumulative distribution func-
tion

P��x� = exp�− ax−
� �3�

�x�0, the coefficient a and the exponent 
 being positive
parameters�.

Power-law structure. Among the class of probability dis-
tributions defined on the positive half-line the Fréchet law is
the only probability distribution characterized by a power-

law backward hazard rate. The backward hazard rate H� �x�
�x�0� of a positive-valued random variable X is defined as

the limit H� �x�=lim�→0 �−1 Pr�
X�x−�
X�x� �10�. Infor-

mally, the backward hazard rate H� �x� is the probability that
the random variable X be realized at the point x—given that
it was not realized within the ray �x ,��.

Probabilistic renormalization. As asserted by extreme
value theory �11–13�, the Fréchet law is the universal sto-
chastic linear scaling limit of maxima of sequences of IID
positive-valued random variables. This universality is mani-
fested by the following “max-renormalization” characteriza-
tion of the Fréchet law:

Let �Xi�i=1
� be IID copies of a positive-valued random

variable X, and consider the scaled maxima ∨n
=n−1/
 max�X1 , . . .Xn� �n=1,2 , . . .�. Then, the scaled maxima
�∨n�n=1

� are all equal in law if and only if the random variable
X is governed by the cumulative distribution function of Eq.
�3�.

Poissonian structure. The Fréchet law is the probability
distribution of the maxima of Poisson processes defined on
the positive half-line and governed by power-law survival
rate functions. More specifically, a Poisson process � is gov-
erned by the power-law survival rate function R��x�=ax−


�x�0� if and only if its maximal point maxp���p� is gov-
erned by the cumulative distribution function of Eq. �3�.

Poissonian renormalization. Poisson processes defined on
the positive half-line and governed by power-law survival
rate functions constitute the fixed points of linear Poissonian
renormalizations with negative exponents. More specifically,
a Poisson process � defined on the positive half-line is a
fixed point of a linear Poissonian renormalization with scal-
ing functions �k�x�=k−1/
x if and only if its survival rate
function admits the power-law form R��x�=ax−
 �x�0�.

C. Lévy

Definition. The �one-sided� Lévy law is defined on the
positive half-line �0,�� and governed by a probability den-
sity function with Laplace transform

L�
� = exp�− ��1 − 
�a

� �4�

�
�0, the coefficient a being a positive parameter, and the
exponent 
 being in the range 0�
�1�.

Power-law structure. Among the class of probability dis-
tributions defined on the positive half-line the Lévy law is
the only probability distribution characterized by a power-
law log-Laplace transform.

Probabilistic renormalization. As asserted by the central
limit theorem �14–16�, the Lévy law is the universal stochas-
tic linear scaling limit of sums of sequences of IID positive-
valued random variables. This universality is manifested by
the following “sum-renormalization” characterization of the
Lévy law:

Let �Xi�i=1
� be IID copies of a positive-valued random vari-

able X, and consider the scaled sum Sn=n−1/
�X1+ ¯ +Xn�
�n=1,2 , . . .�. Then, the scaled sums �Sn�n=1

� are all equal in
law if and only if the random variable X is governed by the
Laplace transform of Eq. �4�.

Poissonian structure. The Lévy law is the probability dis-
tribution of the point aggregates of Poisson processes de-
fined on the positive half-line and governed by power-law
survival rate functions. More specifically, a Poisson process
� is governed by the power-law survival rate function
R��x�=ax−
 �x�0� if and only if its point aggregate 	p��p
is governed by the Laplace transform of Eq. �3� �the expo-
nent 
 being in the range 0�
�1�.

Poissonian renormalization. The same as in the Fréchet
case.

Poisson processes defined on the positive half-line and
governed by power-law survival rate functions—which un-
derlay both the aforementioned Fréchet and Lévy laws—are
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called Paretian Poisson processes, and turn out to play a
focal role in statistical physics. See �18� for a detailed expo-
sition of this important class of processes.

IV. NONLINEAR FRACTAL PROBABILITY LAWS

In this section we present the three nonlinear classes of
fractal probability laws defined on the positive half-line: hy-
per Pareto, hyper beta, and hyper shot noise.

These fractal probability laws are one-dimensional projec-
tions of underlying Poissonian processes, which are the fixed
points of power-law Poissonian renormalizations—a fact
rendering them the classification “nonlinear.” This nonlinear-
ity, in turn, is precisely why these fractal distributions are
unattainable via extreme value theory and via the central
limit theorem �which consider only linear stochastic scaling
limits�.

Contrary to the fixed points of linear Poissonian renormal-
izations, the fixed points of power-law Poissonian renormal-
izations cannot range over the entire positive half-line �0,��.
Rather, they may range either on the unit interval �0,1� or on
the ray �1,��. �Note that the scaling functions of power-law
Poissonian renormalizations indeed map both the unit inter-
val �0,1� and the ray �1,�� onto themselves�.

A. Hyper Pareto

Definition. The hyper Pareto law is defined on the ray
�1,�� and governed by the survival probability function

P��x� = exp�− a�ln�x��
� �5�

�x�1, the coefficient a and the exponent 
 being positive
parameters�.

In the special case 
=1 the hyper Pareto law reduces to a
Pareto law governed by the survival probability function
P��x�=x−a �x�1�.

Power-law structure. Among the class of probability dis-
tributions defined on the ray �1,�� the aforementioned
Pareto law is the only probability distribution characterized
by a power-law survival probability function.

Probabilistic renormalization. Among the class of prob-
ability distributions defined on the ray �1,�� the aforemen-
tioned Pareto law is singled out by the following “condi-
tional renormalization” characterization.

Let X be a random variable taking values in the ray �1,��,
and consider the scaled random variable X / l—having
provided the information that X is greater than the level l
�l�1�. Then, the probability distribution of the scaled ran-
dom variable X / l, conditioned on the information �X� l�, is
independent of the level l if and only if the random variable
X is governed by a power-law survival probability function
of the form P��x�=x−a �x�1�.

Poissonian structure. The hyper Pareto law is the prob-
ability distribution of the minima of Poisson processes de-
fined on the ray �1,�� and governed by cumulative rate func-
tions, which are powers of logarithms. More specifically, a
Poisson process � defined on the ray �1,�� is governed by
the cumulative rate function R��x�=a�ln�x��
 �x�1� if and

only if its minimal point minp���p� is governed by the sur-
vival probability function of Eq. �5�.

Poissonian renormalization. Poisson processes defined on
the ray �1,�� and governed by cumulative rate functions,
which are powers of logarithms, constitute the fixed points of
power-law Poissonian renormalizations with positive expo-
nents. More specifically, a Poisson process � defined on the
ray �1,�� is a fixed point of a power-law Poissonian renor-
malization with scaling functions �k�x�=xk1/


if and only if
its cumulative rate function admits the form R��x�
=a�ln�x��
 �x�1�.

B. Hyper beta

Definition. The hyper beta law is defined on the unit in-
terval �0,1� and governed by the cumulative distribution
function

P��x� = exp�− a�− ln�x��
� �6�

�0�x�1, the coefficient a and the exponent 
 being posi-
tive parameters�.

In the special case 
=1 the hyper beta law reduces to a
beta law governed by the cumulative distribution function
P��x�=xa �0�x�1�.

Power-law structure. Among the class of probability dis-
tributions defined on the unit interval the aforementioned
beta law is the only probability distribution characterized by
a power-law cumulative distribution function.

Probabilistic renormalization. Among the class of prob-
ability distributions defined on the unit interval the afore-
mentioned beta law is singled out by the following “condi-
tional renormalization” characterization.

Let X be a random variable taking values in the unit in-
terval, and consider the scaled random variable X / l—having
provided the information that X is smaller than the level l
�0� l�1�. Then, the probability distribution of the scaled
random variable X / l, conditioned on the information �X� l�,
is independent of the level l if and only if the random vari-
able X is governed by a power-law cumulative distribution
function of the form P��x�=xa �0�x�1�.

Poissonian structure. The hyper beta law is the probabil-
ity distribution of the maxima of Poisson processes defined
on the unit interval and governed by survival rate functions,
which are powers of logarithms. More specifically, a Poisson
process � defined on the unit interval is governed by the
survival rate function R��x�=a�−ln�x��
 �0�x�1� if and
only if its maximal point maxp���p� is governed by the cu-
mulative distribution function of Eq. �6�.

Poissonian renormalization. Poisson processes defined on
the unit interval and governed by survival rate functions,
which are powers of logarithms, constitute the fixed points of
power-law Poissonian renormalizations with positive expo-
nents. More specifically, a Poisson process � defined on the
unit interval is a fixed point of a power-law Poissonian renor-
malization with scaling functions �k�x�=xk1/


if and only
if its survival rate function admits the form R��x�
=a�−ln�x��
 �0�x�1�.
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C. Hyper shot noise

Definition. The hyper shot noise law is defined on the
positive half-line �0,�� and governed by the cumulant se-
quence

C�m� = ��1 + 
�am−
 �7�

�m=1,2 , . . ., the coefficient a and the exponent 
 being posi-
tive parameters�.

In the special case 
=1 the hyper shot noise law reduces
to what we refer to as the “shot noise law”: The stationary
distribution of a shot noise process driven by a Poissonian
noise �21–23� �see also Chapter 9 in �24� for a more recent
account�. Specifically, consider a shot noise process ���t��t,
with relaxation parameter �, which is driven by a homoge-
neous Poisson process �N�t��t with intensity �. Then �24–26�
�i� the dynamics of the shot noise process ���t��t are gov-
erned by the Ornstein-Uhlenbeck stochastic differential

equation �̇�t�=−���t�+ Ṅ�t�; and �ii� the stationary distribu-
tion of the shot noise process ���t��t is governed by the har-
monic cumulant sequence C�m�=am−1 �m=1,2 , . . .� with
“amplitude” a=� /�.

Power-law structure. Among the class of probability dis-
tributions defined on the positive half-line the hyper shot
noise law is the only probability distribution characterized by
a power-law cumulant sequence.

Poissonian structure. The hyper shot noise law is the

probability distribution of the point aggregates of Poisson
processes defined on the unit interval and governed by sur-
vival rate functions which are powers of logarithms. More
specifically, a Poisson process � defined on the unit interval
is governed by the survival rate function R��x�=a�−ln�x��


�0�x�1� if and only if its point aggregate 	p��p is gov-
erned by the cumulant sequence of Eq. �7�.

Poissonian renormalization. The same as in the hyper
beta case.

V. CONCLUSIONS

This research provides a panoramic view and a systematic
classification of the notion of fractality in the context of
positive-valued statistical distributions. We explored six
classes of fractal probability laws defined on the positive
half-line. Each of these classes features a different type of
fractality, manifested by a power-law structure of a corre-
sponding probabilistic characteristic. All classes are one-
dimensional projections of underlying Poisson processes
which, in turn, are the unique fixed points of Poissonian
renormalizations: the linear fractal classes of Weibull,
Fréchet, and Lévy corresponding to linear Poissonian renor-
malizations; the nonlinear fractal classes of hyper Pareto,
hyper beta, and hyper shot noise corresponding to power-law
Poissonian renormalizations. The properties of the six fractal
probability laws are summarized in Table I.

TABLE I. Summary of the properties of the six classes of fractal probability laws considered: �1� the range, or support, of the probability
law; �2� the probability law’s characteristic admitting a power-law structure; �3� the probabilistic renormalization under which the probability
law is invariant; �4� the underlying Poisson process �characterized by either its cumulative rate function R��x� or by its survival rate function
R��x��; �5� the one-dimensional projection linking the underlying Poisson process to the probability law; and �6� the Poissonian renormal-
ization under which the underlying Poisson process is invariant. In the hyper Pareto and the hyper beta classes the inherent power-law
structure and the probabilistic renormalization refer, respectively, to the Pareto and the beta subclasses.

Range Inherent
Power-law
structure

Probabilistic
renormalization

Underlying
Poissonian
structure

Projection Poissonian
renormalization

Weibull �0,�� Forward hazard rate Min renormalization R��x�=ax
 �0�x��� Minimal
point

Linear

Fréchet �0,�� Backward hazard rate Max renormalization R��x�=ax−
 �0�x��� Maximal
point

Linear

Lévy �0,�� Log-Laplace transform Sum renormalization R��x�=ax−
 �0�x��� Point
aggregate

Linear

Hyper Pareto �1,�� Survival
probability

function

Conditional renormalization R��x�=a�ln�x��
 �1�x��� Minimal
point

Power law

Hyper beta �0,1� Cumulative
distribution function

Conditional renormalization R��x�=a�−ln�x��
 �0�x�1� Maximal
point

Power law

Hyper
shot noise

�0,�� Cumulant
sequence

R��x�=a�−ln�x��
 �0�x�1� Point
aggregate

Power law
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